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1. Introduction

Statistics is essentially a branch of mathematics applied to analy-
sis of data. In Food Science, statistical procedures are required in the
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planning, analysis and interpretation of experimental work. Such
work may include surveys of the chemical, physical (e.g. rheologi-
cal), sensory and microbiological composition of food and beverages
during development and manufacture, including changes to these
properties as a consequence of process optimization. Other studies
may look at the association between variables that require analysis
of data to aid interpretation and presentation of the results. Appro-
priate statistical methods need to be used to assess and make
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inferences about the factors that influence the responses; for exam-
ple: evaluation of the effect of adding increasing concentrations of
a fruit extract on the acidity and sensory acceptance of a product;
or the assessment of the effects on the biochemical markers (inflam-
mation, oxidative stress, etc.) in experimental animals treated with
different doses of a food extract or ingredient.

In this sense, the use of statistical tools in food research and develop-
ment is important both in academia and in industrial research in the
food, chemical, and biotechnological industries. However, experience
shows that many workers frequently select the wrong tests, or use the
correct tests in wrong situations. For instance, many researchers often
fail to pay attention to important concepts prior to comparing mean
values. This may arise for one or more of the following reasons: a lack
of interest in performing calculations, misinterpretation of statistical re-
sults or misuse of statistical software, among others. The rapid increase
in computing power has had an important impact on the practice and
application of statistics. Today, many software packages are available
that facilitate statistical analysis of data; when used properly they pro-
vide a valuable tool to enable different types of statistical and mathe-
matical analyses to be done rapidly. Such software packages take
seconds to generate linear/non-linear models, draw graphs or resolve
complex numerical algorithms that used to take a considerable amount
of time using manual procedures.

The importance of proper application of statistics in Food Research
cannot be ignored; it is essential if one is to understand data and
make decisions that take account of the statistical variability of mea-
surement and process control systems, summarize experimental re-
sults, etc. The objectives of this paper are: 1) to explain some concepts
regarding data analysis in Food Science and Technology; 2) to provide
some statistical information and 3) to discuss and present some
published examples of mathematical modeling.

2. Concepts of statistics applied in Food Science

Use of the correct statistical tools is essential since the researcher
needs to extract asmuch information as possible from experimental re-
sults. Whenwork is published in a journal sufficient detail must be pro-
vided to permit the reader to understand fully the aims and outcome of
the research and, should it be appropriate, for the work to be repeated.
However, we observe that many published articles contain insufficient
detail regarding the statistical tests used to interpret and discuss the
published results. The reported analysis of results is often restricted to
descriptive statistics (mean, median, minimum,maximum values, stan-
dard deviation and/or coefficient of variation). These, and other statisti-
cal tests such as correlation, regression, and comparison ofmean values,
are often based on the slavish use of ‘statistical packages’ that may, or
may not, be appropriate for the purpose. It is essential that the research-
er should take into consideration the basis of inferential statistical tests,
prior to their application. Indeed, the researcher needs to understand
the possible choices for relevant data analysis in order to plan experi-
mental work appropriately and then to understand the results within
a comprehensive data structure and draw conclusions based on the
work.

Regardless of the type of experimental design a researcher uses, it is
essential to test the statistical quality of the data prior to their further
evaluation. If the quality of the data is poor, analysis of experimental
datawill often lead tomisleading conclusions. Datamay be of poor qual-
ity if, for example, insufficient samples have been tested; the samples
have not been drawn randomly from the test population(s); the mea-
surement uncertainty of the analytical method(s) used is large; the per-
son doing the analysis is inadequately trained; or if the analytical results
include ‘censored’ values. All of these considerations should be ad-
dressed prior to setting up an experimental plan and all are generally
within the control of the researcher. Sometimes experimental results
may fall outside the limits of an analytical method; for instance, the
level of an analyte in a sample may be below the lowest limit or, more
rarely, above the highest limit of detection or quantification of a
method. Such results are referred to as left- or right-censored values,
respectively. How should such results be handled? This is a subject
much under discussion in many fields, including (food) chemistry,
microbiology and toxicology and several questions still need to be
addressed with respect to the suitability of the procedure used to
handle censored data (Baert et al., 2007; Bergstrand & Karlsson,
2009).

Some workers merely record that results are less than (or more
than) the limit value — in which case they cannot be included in a sta-
tistical analysis of data; some replace censored data by the correspond-
ing limit of detection (LOD) (Govaerts, Beck, Lecoutre, le Bailly, &
Vanden Eeckaut, 2005) and others choose to record the values as half
the limit value (for left-censored data) (Granato, Caruso, Nagato, &
Alaburda, in press; Tressou, Leblanc, Feinberg, & Bertail, 2004). Omis-
sion or ad hoc adjustment of such data can result in serious bias in anal-
ysis of the other results. Another widely used method is based on the
replacement of censored data by random samples froma uniformdistri-
bution with zero as minimum and LOD as maximum (Govaerts et al.,
2005). A procedure, known as the Tobit regression, for evaluation of
censored data in food microbiology has been described by Lorrimer
and Kiermeier (2007) — the concepts are equally applicable in other
areas of Food Science.

Two characteristics of data sets must be considered prior to the
application of any inferential tests:

1. Do the data conform to the principles of ‘normality’, i.e. to a ‘normal’
distribution (ND)?

2. Do the data satisfy an assumption of homoscedasticity, i.e. uniformity
of variance?

What dowemean by a ‘normal’ distribution (ND)? A population ND
can be described as a bell-shaped curve (Fig. 1) under which approxi-
mately 95% of values lie within the range mean (μ) ± 2 standard devi-
ations (σ) and approximately 99% lie within the range μ ± 3σ. The
standard deviation is a measure of the dispersion of values around the
mean value and is determined as the square root of the variance, i.e.σ ¼
ffiffiffiffiffiffi

σ2
p

. The mean value (x) and standard deviation (s) of a set of data
obtained by analysis of random samples provide estimates of the
population statistics.

If a number of random samples from a ‘lot’ or ‘batch’ of food, or in-
deed of other test matrix, is analyzed for some particular attribute
(e.g. sugar content, acidity, pH level) it would be unrealistic to as-
sume that the analytical results will be absolutely identical between
the different samples, or even between subsamples of the same
product. The reasons relate to the measurement uncertainty of the
analytical method used for the test and the intrinsic variation in
composition that occurs both within and between samples. We
would therefore expect to obtain a range of values from the analyses.
If only a few samples are analyzed, the results may appear to be ran-
domly distributed between the lowest and highest levels (Fig. 2A);
but if we were able to examine at least 20 samples, we would expect
to obtain a distribution of results that conform reasonably well to a
ND (Fig. 2B) with an even spread of results on either side of the
mean value. However, in some cases, the distribution will not be
‘normal’ and may show considerable skewness (Fig. 2C) — such re-
sults would be expected, for instance, in the case of microbiological
colony counts.

Since, for a ND, approximately 95% of results would be expected
to lie within the range x� 2s we describe the lower and upper
bounds of this range as the 95% Confidence Limits (CL) of the results;
similarly, we describe the bounds of the 99% CL as x� 3s. What this
means is that 19 of 20 results of an analysis would be expected to
lie within the bounds of the 95% CL, but by definition one result
might occur outside this limits; similarly, one in 100 results might
be expected to lie outside the 99% CL bounds. Results that do fall out-
side the CLs are often referred to as ‘outliers’ — whether such results



Fig. 1. A population normal distribution (ND) curve showing that approximately 95.45% of all results lie within ±2 standard deviations (s) of the mean and 99.73% lie within ±3s.
Modified from Jarvis (2008).
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are true values or occur because of faults in analytical technique can
never be known, but it is essential to assess the frequency with
which outliers occur. Various techniques exist for estimating the
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Uniformity of variances is important in comparing results from two
or more different sets of samples. If the variance of one set of results is
much larger than that of a second set then it is not possible to use
many standard parametric statistical tests to compare the mean values
in a meaningful way. Fig. 3 shows distributions for two sets of ND
data. Both sample sets have the same mean value of 10 g/l and but the
standard deviation of sample set A (sA = ±0.25) is only half that of
sample set B (sB = 0.50). Thus the variance of set B is four times greater
than that of set A and 25% of the values under curve B fall outside the
bounds of the 95% CL of set A. Such differences in variance show that
the two distributions are very significantly different.

Often the researcher will wish to compare results from different
samples; such tests may include comparison of mean or median values,
determination of correlation and regression parameters, etc. Prelimi-
nary questions regarding the population(s) from which the samples
were drawn need to be established in order to ensure that the correct
analysis is chosen.

Experimental data can assume various forms: the distribution of data
values for a measured variable following replicate analysis of samples
may be either continuous, i.e. it can assume any value within a given
range, or discrete, i.e. it can assume only whole number (integer) values.
The latter generally applies to counts rather than measurements as in
qualitative microbiological tests. In some situations, experimental vari-
ablesmaybe ‘nominal’, e.g.male or female gender selection for taste trials,
‘categorical’, e.g. values can be sorted according to defined categories such
as good, average or poor for qualitative taste tests, or ‘ordinal’, e.g. values
are ranked on a semi-quantitative basis using a predetermined scale such
as hedonic taste panel scores. It is essential to understand data set desig-
nations in order to carry out appropriate analyses. Special nonparametric
procedures are required for analysis of nominal, categorical and ordinal
data sets.

In the next sections, we will focus on those statistical parameters
that need to be determined and the underlying requirements for each
test; andprovide examples of the use of particular tests. Froma practical
standpoint, the analyst may choose to use statistical packages, either
those that are free of cost (e.g. R, Action, Chemoface) or commercial
software such as SAS (Statistical Analysis Software), Microsoft Excel,
SPSS (Statistical Package for Social Science), Statistica, Statgraphics,
Minitab, Design-Expert, and Prisma in order to design and analyze exper-
imental data. However, an understanding of the underlying principles is
vital to ensure that the correct tests are done.
2.1. Normality and homoscedasticity

2.1.1. Normality of data: is it truly important?
The normality of experimental results is an important premise for the

use of parametric statistical tests, such as analysis of variance (ANOVA),
correlation analysis, simple and multiple regression and t-tests. If the
8.5 9.0 9.5 10.0 10.5 11.0 11.5
g/l

Fig. 3. Comparison of two ND curves both having x = 10 g/l; curve A ( ) has s = 0.25
and B has s = 0.5 ( ). Note thatmore than 25% of thedata values for curve B fall outside
the 95% CLs (9.5, 10.5) of the data in curve A.
assumption of normality is not confirmed by relevant tests, interpreta-
tion and inference from any statistical test may not be reliable or valid
(Shapiro & Wilk, 1965).

Normality tests assess the likelihood that thegiven data set {x1,…, xn}
conforms to a ND. Typically, the null hypothesis H0 is that the observa-
tions are distributed normally, with population mean μ and population
variance σ2; the alternative hypothesis Ha is that the distribution is not
normal. It is essential that the analyst identify the statistical distribution
of the data. Most chemical constituents and contaminants conformwell,
or reasonably well, to a ND, but it is generally recognized that microbio-
logical data do not. Whilst microbial colony counts generally conform to
a lognormal distribution, the numbers of cells in dilute suspensions gen-
erally approximate to a Poisson distribution. The prevalence of very low
levels of specific organisms, especially pathogenic organisms such as
Cronobacter spp. and Salmonella spp., in infant feeds and other dried
foods show evidence of over-dispersion that is best described by a
negative-binomial or a beta-Poisson distribution (Jongenburger, 2012).
Data from microbiological studies therefore require a mathematical
transformation before statistical analysis is done (Jarvis, 2008). It is
usual to transform microbial colony counts by using the log10 transfor-
mation although the natural logarithmic transformation (ln) is strictly
the more accurate. Data conforming to a Poisson distribution is trans-
formed to the square root of the count value. Other more complex
transformations are required for negative binomial and beta-Poisson
distributions (Jarvis, 2008).

In practice, there are two ways to check experimental results for
conformance to a ND: graphically or by using numerical methods. The
graphical method, usually displayed by normal quantile–quantile
plots, histograms or box plots, is the simplest and easiest way to assess
the normality of data; however, this method should not be used for
small data sets due to lack of sufficient quantitative information
(Razali & Wah, 2011). Numerical approaches are the best way to test
for the normality of data, including determination of kurtosis and skew-
ness; for example, tests such as those attributed to Anderson–Darling
(AD), Kolmogorov–Smirnov (KS), Shapiro–Wilk (SW), Lilliefors (LF),
and Cramér vonMises (CM). Frequently, people use histogramsor prob-
ability plot graphs to test for normality (when they do!), but it can be
risky since it does not provide quantitative proof that data follow ND.
The shape of the graph depends on the number of samples examined
and the number of bins used. Due to the small number of values the
data shown in Fig. 4 do not appear to follow a normal distribution but
the hypothesis of normality is not rejected by tests.

Razali andWah (2011) studied the power and efficiency of four tests
(AD, KS, SW, and LF) using Monte Carlo simulation and concluded that
SW is the most powerful test for all types of distribution and sample
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Fig. 4. Histogram of data values overlaid with a ND plot. Although the data do not appear
to conform to a ND, tests for normality do not reject the null hypothesis due to the small
number of data: Kolmogorov–Smirnov: pKS N 0.20; Lillifors: pLillifors N 0.10, and Shapiro–
Wilk: pSW = 0.68666.
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sizes, whereas KS is the least accurate test. They also confirmed that AD is
almost comparable with SW and that LF always outperforms KS. Our ex-
perience in analyzing different types of experimental data (sensory,
chemical, physicochemical, microbiological), suggests the use of SW to
check for normality of data, regardless of the sample size. Ideally, only
one test should be used to determine whether a data set conforms, or
not, to normality and the conclusion must be based on the critical p-
value of the test. If the test shows a p b 0.05 then the null hypothesis,
that the data conform to normality, must be rejected; conversely, if
p ≥ 0.05 then the hypothesis of normality is not rejected. Using the ex-
ample of Fig. 5, the SWtest gives p = 0.02355 b 0.05, so the null hypoth-
esis is rejected and the alternative hypothesis, that the data do not follow
a normal distribution, is accepted but if the KS test had been used
p = 0.217 N 0.05 so the hypothesis of normality is not rejected. The
moral is to choose your test with care and to understand its limitations.

In sensory and microbiological studies, for example, it is very com-
mon to obtain results that do not follow a ND (Granato, Ribeiro, Castro,
& Masson, 2010). Fig. 6 shows 50 observations of scores (0–100%) that
describe the extent towhichpanelistsfind theflavor of a new food prod-
uct acceptable. The distribution is slightly asymmetric and do not con-
form to a ND (p b 0.05 using the SW test) and the researcher would
have to decide either to apply non-parametric statistics or to transform
the results in order to use parametric tests. By using the square root or
ln transformations and subjecting the transformed values to Shapiro–
Wilk test, the new p-values would be 0.091 and 0.083, respectively.
Therefore, either transformation would be suitable to transform these
asymmetric values into normally distributed data.
2.1.2. Equality of variances: importance and concepts
It has been observed that some researchers pay no attention to the

application of appropriate statistical techniques to validate experimen-
tal data. For all types of measurements, variance homogeneity, called
homoscedasticity, should be assessed graphically and by a numerical
test (Montgomery, 2009). This procedure is necessary in order to guar-
antee the correct application of tests for comparison ofmean values and
the user should always display the probability (p-value) of the test in
text, tables or figures.

Model-based approaches usually assume that the variance is constant;
however it is necessary to prove this by using an appropriate test. Distri-
butions having a mean value (μ) = 0 and variance (σ2) = 1 are called
standard normal distributions and are often used to describe, at least ap-
proximately, any variable that tends to be distributed equally around the
mean (Gabriel, 1964).
Fig. 5.Histogramof data values overlaidwith aND curve; the Shapiro–Wilk (SW) rejects the
hypothesis for normality (p = 0.0236) but the Kolmogorov–Smirnov (KS) test (p N 0.20)
does not reject the null hypothesis. The result from the Lilliefors tests (p b 0.10) is
indeterminate.
The tests to check for homogeneity of variances require the follow-
ing hypotheses: H0: σ1

2 = σ2
2 = … = σk

2 and Ha: σk
2 ≠ σl

2 for at least
one pair (k, l). Assumption that the variance of data is homoscedastic
when it is not causes serious violation of the operational requirements
of many statistical tests and results, for instance, in overestimates of
the goodness of fit as measured by the Pearson coefficient of regression
analysis. Incorrect assumption of normality of variances may result in
the misuse of parametric tests to compare mean values; for such data
a suitable non-parametric test may be more appropriate.

Several tests are available to check the equality of variances on data
from three or more samples and include those of Cochran, Bartlett,
Brown–Forsythe and Levene; the F-test is used to check for homogene-
ity of two variances. In the example given above (Fig. 3) the ratio of the
variances for data sets A and B, each comprising 1000 values, is four. As-
suming that the ‘degrees of freedom’ in each case is infinity, the F-test
value from standard statistical tables should not exceed a value of one.
So since FA/B = 4 ≫ F∞,∞ = 1, the difference in the variances is statisti-
cally significant at p b 0.001.

Levene's test for homogeneity of variances (Levene, 1960) is robust
and is typically used to examine the plausibility of homoscedasticity for
data from three or more samples. It is less sensitive to departures from
normality than that of Bartlett's test (Snedecor & Cochrane, 1989),
which should be used only if there is convincing evidence that the ex-
perimental results come fromanormal distributionWe strongly recom-
mend the use of the Levene test to check for homogeneity of variances
for sets of analytical, as well as for sensory (e.g. hedonic tests), data.

Thus, the researcher has two distinct situations: the variances are es-
sentially equal or they are not. If the test shows that variances are het-
erogeneous, two possibilities exist: to use a non-parametric test or to
transform the dependent variable in order to obtain a constant variance
of the residues. Different types of transformations can be used, such as
the logarithmic, Box–Cox, square root or inverse function transforma-
tions, depending on the distribution of the data. This approach can be
used when the analytes do not follow a normal distribution (as in the
case ofmicrobiological and sensory data). Data transformationmaynor-
malize the distribution, stabilize the variances or/and stabilize a trend
(Rasmussen & Dunlap, 1991). Parametric analysis of transformed data
provides a better strategy than non-parametric analysis because the for-
mer is more powerful and accurate than the latter (Gibbons, 1993).
However, it is important to keep in mind that the point of the transfor-
mation is to ensure the validity of the analysis (ND, equal standard de-
viations) and not to ensure a certain type of result (Rasmussen &
Dunlap, 1991). It is worth noting that transformation should be avoided
if possible since the transformed variable loses its absolute identity.

Another important issue that needs to be considered is the use of
statistical software to check for homogeneity of variances. Take into
consideration the following example: a researcher measures the
content of a certain phenolic compound in a star fruit using different
solvents (methanol, water, or ethyl acetate) by means of high-
performance liquid chromatography (HPLC) and obtains the follow-
ing results (expressed as mg/100 g of fruit pulp): methanol: 22.36;
22.45; 22.50; water: 13.30; 13.40; 13.55; ethyl acetate: 11.12;
11.22; 11.18. By applying the Bartlett's test using both Statistica
and Action software, the p-value was 0.4970. On the contrary,
when Levene's test was applied, p-values of 0.5393 and 0.3695
were obtained using Action and Statistica software, respectively.
This is because of differences in the method of calculation: while
the Levene's test implemented in Statistica performs an ANOVA on
the deviations from the mean, Action software carries out the analy-
sis on the deviations from the group medians (this is also known as
the Brown–Forsythe test). Thus, the researcher needs to understand
how the p-values are obtained in each statistical software rather to
care about the number itself.

More details about tests to check for homogeneity of variances can be
found in Levene (1960), Brownand Forsythe (1974), Limand Loh (1996),
Keselman and Wilcox (1999) and Gastwirth, Gel, and Miao (2009).
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2.2. Parametric statistics in Food Science

Depending on the statistical distribution of data, sample size, and
homoscedasticity, samples and treatments can be compared using para-
metric or non-parametric tests. Parametric tests should be used when
data are normally distributed and there is homogeneity of variances,
as shown by the Shapiro–Wilk and Levene (or F) tests, respectively.
Fig. 7. Statistical steps and tests to compare two or more s
Then, a Student's t-test is used to check for differences between two
mean values or an ANOVA is used when three or more mean values
need to be compared (Fig. 7).

2.2.1. Comparing two samples/treatments
When the mean values for a specific characteristic in two data sets

are to be compared and both data sets are normally distributed and
amples in relation to a quantitative response variable.

image of Fig.�6
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have similar variance, a Student's t-test should beused. The null hypoth-
esis (H0) is that themean values donot differ; the alternative (Ha) is that
they dodiffer. However, if there aremore than twodata sets it is not cor-
rect to test each pair using a t-test (one of us recently received a paper in
which 21 t-tests had been applied to compare individual pairs for seven
sets of data!). The approach to be taken depends on whether the data
are paired or independent and it is sometimes difficult to choose the
correct version of the test. Samples are considered to be independent
when they differ in nature and do not depend on one another. For
example, Student's t-test for independent samples should be used to
compare the ascorbic acid content of two cultivars of strawberries, or
the production of an enzyme by two bacterial strains. A paired sample
t-test is used if each of several samples are analyzed in parallel for the
same characteristic by two different methods or if tests (e.g. blood
sugar levels) are done on samples taken from subjects both before and
after ingestion of a specific food ingredient. If the variances are not
strictly equal, a correction factor (Welch's test) should be included in
the statistical analysis. If the data do not conform to ND, non-
parametric tests should be used.

2.2.2. Analysis of variances for three or more data sets
Analysis of variances (ANOVA) is a parametric statistical tool that

partitions the observed variance into components that arise fromdiffer-
ent sources of variation. In its simplest form, ANOVA provides a statisti-
cal test of whether or not the means of several groups are all equal. In
this sense, the null hypothesis, H0, says there are no differences
among results from different treatments or sample sets; the alternative
hypothesis (Ha) is that the results do differ. If the null hypothesis is
rejected then the alternative hypothesis, Ha, is accepted, i.e. at least
one set of results differs from the others. The ANOVA procedure should
be used to compare the mean values of three or more data sets. One
practical example of application of analysis of variance is provided by
Oroian, Amariei, Escriche, and Gutt (2013): authors investigated the
rheological behavior of honeys from Spain under different temperatures
(25 °C, 30 °C, 35 °C, 40 °C, 45 °C, and 50 °C) and concentrations and
compared the samples using one-way ANOVA followed by a test of
multiple comparison of means.

Three alternative models can be used in an ANOVA: fixed effects,
random effects or mixed effects models. The fixed effects model is ap-
propriate when the levels of the independent variables (factors) are
set by the experimental design. The random effects model, which is
often of greatest interest to a researcher, assumes that the levels of
the effects are randomly selected from an infinite population of pos-
sible levels (Calado & Montgomery, 2003). Independent variables
may occur at several levels and it may be necessary to choose ran-
domly only some levels; for instance, when samples are obtained
randomly from four out of ten retailers of a particular product, or
when three out of a possible seven brands of product are selected
for analysis, provided always that the selection is done randomly.
In certain circumstance some independent variables are assumed
to be random effects and others to be fixed effects; here a mixed
model should be used. In most experimental work a random effects
model approach is often the most appropriate.

Depending on the number of factors to be analyzed, we can
have:

1) A one-way ANOVA in which only one factor is assessed. This is the
case for relatively simple comparisons of physicochemical, colori-
metric, chemical and microbiological analytes (Alezandro, Granato,
Lajolo, & Genovese, 2011; Corry, Jarvis, Passmore, & Hedges, 2007;
Granato &Masson, 2010; Oroian, 2012). For example, if five samples
of apple are analyzed for catechin content, the “apples” are the inde-
pendent variable and the “catechin content” is the dependent re-
sponse variable. Another important application of one-way ANOVA
is when different groups of test animals that are treated with an
extract/drug and compared to a control group (Macedo et al., 2013).
2) A 2-way ANOVA is used for two factors in which only the main ef-
fects are analyzed. The 2-way ANOVA determines the differences
and possible interactions when response variables are from two or
more categories. The use of 2-way ANOVA enables comparison and
contrast of variables resulting from independent or joint actions
(MacFarland, 2012). This type of ANOVA can be employed in sensory
evaluation when both panelists and samples are sources of variation
(Granato, Ribeiro, & Masson, 2012) or when the consistency of the
panelists needs to be assessed;

3) A factorial ANOVA for n factors, that analyzes themain and the inter-
action effects is themost usual approach formany experiments, such
as in a descriptive sensory ormicrobiological evaluation of foods and
beverages (Ellendersen, Granato, Guergoletto, & Wosiacki, 2012;
Jarvis, 2008; Mon & Li-Chan, 2007);

4) A repeated-measures (RM) ANOVA is used to analyze designs in
which responses on two ormore dependent variables correspond
to measurements at different levels of one or more varying
conditions. Benincá, Granato, Castro, Masson, and Wiecheteck
(2011) used a RM-ANOVA to examine results from assessments
of different instrumental color attributes for a mixture of juices
from yacón (Peruvian ground apple) tubers and yellow passion
fruit as a function of storage time.

The ANOVA approach provides a global analysis of the overall vari-
ance and assesses whether or not the variance of one or more, data
sets differs significantly from the others but the output does not identify
which variables differ. Thus, post-hoc tests need to be performed in
order to specify exactly which pairs of means differ statistically. Various
parametric and non-parametric tests can be used to compare themeans
of response variables, based on a normal or non-normal distribution of
means, respectively. The choice of post-hoc tests to be used should be
decided in advance so that bias is not attributed to any one set of data.

In recent times, so-called ‘robust’ ANOVA methods have been devel-
oped that are not affected by outlier data and can be used when data do
not conform strictly to ND. Theywere developed following a need to an-
alyze inter-laboratory studies during validation of analyticalmethods for
use in chemistry andmicrobiology and are important also in determina-
tion of measurement uncertainty estimates that are nowadays required
as part of laboratory accreditation (Elison, Rosslein, & Williams, 2000).
Two approaches have been described: the first (Anonymous, 2001a) is
based on a recursive application of an M-type estimator (Barnet &
Lewis, 1978) and the second uses theMedian Absolute Paired Deviation
(MAPD) described originally by Rousseuux and Croux (1993). For expla-
nation of these procedures refer to Hedges and Jarvis (2006) andHedges
(2008). Software for the MAD procedure can be downloaded from the
Anonymous (2001b).

2.2.3. Post-hoc tests to compare three or more samples/treatments
Post-hoc tests are used for investigation of statistically significant dif-

ferences (pANOVA b 0.05) identified in an analysis of variance. When the
mean values of three ormore samples have homogeneous variances, the
performance of such post-hoc tests in terms of Type I error (accepting
equality of means when they are actually different) and Type II error
(rejecting equality when they are not different) has been evaluated by
many workers including Gabriel (1964), Boardman and Moffitt (1971),
O'Neill and Wetheril (1971), Bernardson (1975), Conagini, Barbin, and
Demétrio (2008), but there are still manyunanswered questions regard-
ing suitability. In practice, the choice of the best test to compare mean
values depends on the investigator's experience. We recommend the
use of Duncan's multiple range test (MRT) or Fisher's Least Significant
Difference (LSD) test because of their high power to detect significant
differences in mean values (Fig. 4) or Tukey's Honest Significant Differ-
ence (HSD) test.

The Tukey HSD is a single-step multiple comparison generally used
in conjunction with an ANOVA to identify if one mean value differs sig-
nificantly from another. It compares all possible pairs of means and is



Table 1
Use of theWilcoxon Signed Ranks test to determine the level of patulin in lots of an apple
compote (legal limit 25 μg/kg) using two analytical methods (A & B).

Production lot Patulin (μg/kg) Difference Sign Rank (R) Signed R

A B A − B

1 12.5 10.5 2.0 + 8.5 +8.5
2 11.5 10.8 0.7 + 6 +6
3 12.5 13.0 −0.5 − 4 −4
4 12.0 12.0 0 − −
5 14.0 12.0 2.0 + 8.5 +8.5
6 12.5 12.4 1.0 + 1 +1
7 14.0 12.3 1.7 + 7 +7
8 12.5 12.7 −0.2 − −2 −2
9 14.0 13.5 0.5 + 4 +4
10 13.0 12.5 0.5 + 4 +4
Mean 12.85 12.17 Sum R+ +39

Sum R− −6

Tabulate the results for methods A & B, then determine the difference (A − B).
Ignoring the sign and any zero value allocate a rank to each difference, using an average
rank if results are identical. Then allocate the relevant sign to each rank.
Add the rank scores for R+ and R− and, for the number of pairs (in this case n = 9),
compare the smaller rank total with the tabulated value in tables of Wilcoxon's signed
ranks. If, as in this case, the smaller rank total is ≤ published value then the difference is
statistically significant at p = 0.05. Hence the null hypothesis, that results from both
methods are equal, should be rejected as method A gives higher results. Whether the dif-
ferences are of practical importance is another matter!
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the most useful test for multiple comparisons. However, the method is
not statistically robust, being sensitive to the requirement that the
means need to follow a normal distribution. Evenwhen there is a signif-
icant difference between a pair of means, this test often does not pin-
point it (Calado & Montgomery, 2003). However, many researchers
claim that the Tukey test is the procedure of choice since it avoids
Type II errors.

Fisher's LSD test is a statistical significance test used where sam-
ple sizes are small and when the distribution of the residues is nor-
mal (pLevene ≥ 0.05). The test is much more robust than Tukey but
it is the most sensitive to Type I errors; yet it provides an important
tool for comparing means after an ANOVA procedure (Carmer &
Swanson, 1973). Duncan's MRT is not restricted to data conforming
strictly to ND and does not require a significant overall ‘between-
treatments’ F test but it is also likely to give Type I errors. The
Tukey–Kramer HSD single-step multiple comparison procedure
compares mean values using a ‘Studentized Range’, which is more
conservative than the original Tukey HSD test, and can be used
with unequal group sizes. It is much stricter than many other tests
but is less likely to give Type I errors (Keppel & Wickens, 2004).

2.3. Non-parametric statistics in Food Science

Non-parametric procedures use ranked data rather than actual data
values. The data are ranked from the lowest to the highest and each
value is assigned, in order, the integer values from 1 to n (where
n = total sample size) (Hollander & Wolfe, 1973). Non-parametric
methods provide anobjective approachwhen there is no reliable (univer-
sally recognized) underlying scale for the original data andwhen there is
concern that the results of standard parametric techniqueswould be crit-
icized for their dependence on an artificial metric (Siegel, 1956). Such
tests have the obvious advantage of not requiring any assumption of nor-
mality or homogeneity of variance. Because they comparemedians rather
thanmeans the comparison is not influenced by outlier values. Themajor
disadvantage of non-parametric techniques is the lack of defined param-
eters and it is more difficult to make quantitative statements about the
actual difference between populations. Ranking for non-parametric pro-
cedures preserves information about the order of the data but discards
the actual values. Because information is discarded, non-parametric pro-
cedures can never be as powerful (i.e. less able to detect differences) as
their parametric counterparts (Hollander & Wolfe, 1973).

Non-parametric tests are also used for nominal, categorical and ordi-
nal data or when data have been assigned values on an arbitrary scale
for which no definitive numerical interpretation exists, such as when
evaluating preferences in sensory evaluation. Every non-parametric
procedure has its peculiar sensitivities and blind spots. If possible, it is
always advisable to run different nonparametric tests; if there are dis-
crepancies in the results, one should try to understand why certain
tests give different results.

2.3.1. Comparing two samples/treatments
Non-parametric tests can be used to examine data in a manner that

is analogous to the use of paired and independent t-tests. Independent
tests are evaluated using the Mann–Whitney test (Mann & Whitney,
1947) and paired tests by the Wilcoxon signed rank tests. Both require
ranking of data as the first stage of the evaluation.

In what way are data unsuitable for parametric testing? Choice of
non-parametric tests is predicated on examination of data that do not
conform to a ND, especially data from samples drawn from different
populations. For example, consider the comparison of a new simple
method (B) with a standard method (A) for estimation of patulin in
samples of an apple pureemanufactured at different times from a num-
ber of individual ingredient sources. Since all ingredients come fromdif-
ferent populations and the products are prepared individually, samples
taken from any one ‘lot’ would come from a unique population but
across ‘lots’ each populationwould be different. Since the same samples
are tested by the two methods it is appropriate to consider the tests to
be paired but as each sub-set of analyses is made on a different popula-
tion of samples it is not appropriate to use a Student's t-test. Themethod
of choice is theWilcoxon Signed Ranks test (Wilcoxon, 1945)where the
difference between the results for the twomethods (A, B) is determined
and a sign (+,−) is used to definewhethermethodAor B is the greater.
Values are then ranked in sequence from the smallest value upwards
but without reference to the sign; the sign is then reinstated against
the rank value and the sums of the + and − ranks are determined
(Table 1). The lesser rank total is then compared with tabulated values
for theWilcoxon signed rank statistic (U) and the statistical significance
is determined.

Another example might be where two independent methods have
been used to swab chicken skins for levels of bacteria. Each area will
be independent of all other areas and the two swabbing procedures
are also completely independent. Once again we are dealing with non-
normal populations from discrete work areas so we cannot use para-
metric tests to compare the results. In this case the procedure of choice
is theMann–Whitney U test. If we assume that there are n pairs of tests,
ranks are allocated from 1 to 2n without regard for the data set from
which they come (Table 2). The total rank scores for each method are
then determined and a U statistic is calculated for each data set. The
smaller value of U is then compared with tabulated values to determine
the significance.

Full details of these tests, together with tables of significant values,
are found in standard texts such a Snedecor & Cochrane (1989).

2.3.2. Comparing three or more samples or treatments
Itwill have beennoted above that the key requirement for a paramet-

ric comparison of three or more variables using ANOVA is that the data
must conform to, or be transformable, to a ND and the variances should
be relatively homogeneous. If this is not possible, two non-parametric
approaches can be used: the Kruskal–Wallis and the Friedman tests.
Both tests rely on ranking of results but whilst the Kruskal–Wallis test
ranks all results (with ties getting the average rank) before summating
the rank values according to the treatment, in the Friedman test ranks
are determined for each individual treatment.

The Kruskal and Wallis (1952) is a non-parametric multiple range
test of differences in central tendency (median) that essentially pro-
vides a one-way analysis of variance for three or more independent
samples based on ranked data. It is most often used for analysis of



Table 2
Comparison of bacterial numbers on cotton and plastic sponge swabs taken from chicken
neck skins immediately after evisceration.

Number of bacteria (CFU × 10−4/25 cm2)

Cotton swab (A) Sponge swab (B)

Count Rank Count Rank

110 14.5 20 7
16 6 200 20
24 8 5 2
105 13 89 11
155 18 125 16
2 1 140 17
104 12 180 19
10 4 49 10
7 3 15 5
28 9 110 14.5

Allocate ranks (1–20) across both sets of data; average the rank for identical counts (in this
case, counts of 110).
Calculate the rank totals: RA = 88.5; RB = 121.5.
Calculate the UA statistic for data set A: UA = [nA(nA + 1) / 2 + nAnB − RA] = 66.5.
Similarly, calculate the UB statistic for data set B: UB = 33.5.
Take the smaller value of U as the test statistic and compare it with the Mann–Whitney
tabulated value for p = 0.05 with nA = nB = 10.
The calculated value of UB (33.5) N Ucritical (23) so the null hypothesis that both methods
give equal results is not rejected — the 2-tailed probability is p = 0.25.

Table 3
Non-parametric analysis of the scores from a wine tasting.

Wine Score for taster no.

1 2 3 4 5

A 1 1 2 1 3
B 5 5 4 5 5
C 2 3 3 1 3
D 1 3 1 3 2
E 1 2 1 2 2
F 2 2 2 4 2

Table 4
Average rank for the wine tasters.

Wine (n) Ranked score for taster (k)

1 2 3 4 5

A 2 2 4 2 5
B 3.5 3.5 1 3.5 3.5
C 2 4 4 1 4
D 1.5 4.5 1.5 4.5 3
E 1.5 4 1.5 4 4
F 2.5 2.5 2.5 5 2.5
Total (Rk) 13 20.5 14.5 20 22
Rk

2 169.0 420.3 210.3 400.0 484.0
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data having one ‘nominal’ variable and one ‘continuous’ variable. An ex-
ample of its use might be the case of a food engineering study in which
three different brands of filter pads are tested to assess their effective-
ness in filtering beer. Replicate filters of each brand are assessed using
one batch of raw beer to determine the period of time before each filter
becomes blocked (as judged by e.g. the filter pressure); thework is then
repeated on further batches of beer. The objective is to assess the cost-
effectiveness of the different brands. The filter brands provide the ‘nom-
inal’ values and the time to blocking is the continuous measurement.
The test can be used for data with non-homogeneous variances or for
data that do not conform to ND; it can be used when the groups are of
unequal size, but the test assumes that the shape and distribution of
data for each group is similar. The test is essentially an extension of
the Mann–Whitney U test (qv), which can be applied to pairs of data
as a post-hoc test of significance between pairs of results.

The Friedman (1937, 1939) test is used to determine differences in
central location (median) for analysis of trials with one-way repeated
measures having three or more dependent samples and is also based
on ranking of data. Dependent samples might include, for instance,
the assessment scores of k taste panelists who are judging n indepen-
dent samples of wine— are the scores given by each panelist consistent
or is there a significant difference between panelists and, if so, does this
differ between the wine samples? The data consists of a matrix of n
rows (the ‘blocks’) representing the wine samples and k columns
(treatments) representing the panelists. Five trainee wine tasters have
assessed the overall quality of each of six wines, using hedonic scores
from 1 (excellent) through 3 (average) to 5 (awful). The results are
summarized in Table 3. The data for each ‘block’ are ranked from lowest
to highest, tied values each being given the average rank. The ranked
data are then analyzed to determine the χ2 value. If the null hypothesis
that themean scores do not differ is rejected it is then necessary to carry
out post-hoc tests to determine the source(s) of the differences.

Recognizing that some variation in response is to be expected, the
instructor wishes to knowwhether there is overall agreement between
the tasters. The approach is to use the Friedman procedure that ranks
the performance of tasters for each wine. If the taste score between
two or more individuals is identical each receives the average rank in
Table 4.

The scores for each taster are totaled (Rk) and the square of the
totals is determined (Rk

2). The number of tasters = k = 5; the
number of samples = n = 6. We determine a value M using the

equation: M ¼ 12
nk kþ1ð Þ∑R2

k−3n kþ 1ð Þ.
For these data,M = 4.233withυ = k − 1 = 4degrees of freedom.

From the Tables, we find that the critical value for χ2(p = 0.05, υ = 4) is
9.49 which is greater than M and therefore we do not reject the null
hypothesis that the tasters have scored the samples uniformly.

Full details of these, and other nonparametric and parametric tests,
are given in standard works including Sheskin (2011).
2.4. Bivariate correlation analysis

Correlation is a method of analysis used to study the possible associ-
ation between two continuous variables. The correlation coefficient (r)
is a measure that shows the degree of association between both vari-
ables (Granato, Calado, Oliveira, & Ares, 2013). This parametric test re-
quires both data sets to consist of independent random variables that
conform to ND. The correlation coefficientmeasures the degree of linear
association between the two sets of data (A and B), and its value lies
between−1 and+1. The closer the absolute value, |r|, is to 1, the stron-
ger the correlation between the data values (Ellison, Barwick, & Farrant,
2009). The correlation between two variables is positive (Fig. 8A) if high
values for one variable are associatedwith high values for the other var-
iable and negative (Fig. 8B) if one variable is lowwhen the other is high.
A correlation close to r = 0 (Fig. 8C) indicates that there is no linear
relation, or at best a very weak correlation, between the two variables.
However, a low r-value does not necessarily imply that there is no rela-
tionship between the responses; a low value can be due to the existence
of a non-linear correlation between these variables, but the presence of
outliers in one or both data sets may also affect the r-value (Altman,
1999).

Many workers calculate the Pearson linear correlation coefficient in
order to seek to determine the strength of association between data
sets. However, whenmore than five variables are analyzed, the analysis
is compromised because correlation coefficients do not assess simulta-
neous association among results for all variables, which makes it diffi-
cult to understand and interpret the structure and patterns of the
data. For example, if one considers five sets of response variables (A, B,
C, D and E), it is necessary to calculate the correlation coefficients, and
their significance, for each data set pair, i.e. AB, AC, AD, AE, BC, BD, BE,
CD, CE, and DE. It is easy to understand and interpret up to three
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correlations coefficients but, in order to better understand multiple re-
sponses, a more sophisticated multivariate statistical approach, such
as principal component analysis, clustering techniques, linear discrimi-
nant analysis should be used (Besten et al., 2012, 2013; Granato et al., in
press; Zielinski et al., in press).

When large sets of results (≥30) are analyzed, data should be for-
mally checked for normality. If the data do not follow a normal distribu-
tion a non-parametric approach, such as the Spearman's rank correlation
coefficient, should be used to analyze for any correlation between the
responses. Fig. 9 shows the steps to follow when two data sets (each
with n ≥ 8) are to be analyzed with respect to correlation. Spearman's
correlation coefficient (ρ) should be used when either or both data
sets do not conform to ND, when the sample size is small, or when the
variables are measured as ordinals i.e. first, fifth, eighth, etc. in a se-
quence of values. The Spearman correlation coefficient does not require
the assumption that the relationship between variables is linear.

One good example to compare both Pearson and Spearman correla-
tion coefficients can be obtained by analyzing the data sets below:

A: 12.56; 14.46; 16.65; 25.68; 16.80; 28.95; 32.25; 30.33; 32.81;
28.29; 29.98; 30.32; 33.57
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Fig. 8. (A) Positive correlation, (B) negative correlation, and (C) almost null correlation.
B: 53.25; 65.33; 53.68; 62.74; 61.53; 64.89; 66.40; 60.99; 68.50;
56.30; 66.36; 68.25; 73.89.

The normality of both data sets was assessed using the Shapiro–Wilk
test and p-values of 0.017 and 0.605 were obtained for A and B, respec-
tively. Since onedata set does not followanormal distribution, Spearman
correlation rank coefficient (ρ = 0.753, p = 0.004) should be used rath-
er than the Pearson correlation coefficient (r = 0.660, p = 0.014). As
observed in this simple example, it is possible to assume that depending
on the method employed to assess correlation between two response
variables, the coefficient magnitude and its significance may be highly
different, and the conclusion (inferences) of the studymay bemisleading
or even wrong.

There is no scientific consensus about the qualitative assessment of
correlation coefficients, that is, whether a correlation coefficient is
truly strong, moderate or weak. Granato, Castro, Ellendersen, and
Masson (2010) established an arbitrary scale for the strength of correla-
tions between variables using the following criteria: perfect (|r| = 1.0),
strong (0.80 ≤ |r| b 1.0), moderate (0.50 ≤ |r| b 0.80), weak
(0.10 ≤ |r| b 0.50), and very weak (almost none) correlation
(0.10 ≤ |r|).

There are two major concerns regarding correlation tests: the signifi-
cance of the correlation and the interpretation of results. Firstly, to as-
sume a statistically significant association between variables the p-value
of the correlation coefficient should be b0.05. Granato, Katayama, and
Castro (2011) showed thatwith large data sets, the correlation coefficient
is often statistically significant even at a moderate or low r value. On the
other hand,when the data set is small (Granato, Freitas, &Masson, 2010),
high values of rmay be observed but the statistical probability of the cor-
relation is not significant (p N 0.05). Secondly, when a correlation coeffi-
cient is calculated, it is not always possible to assume causation because
Fig. 9. Steps to follow when two data sets (usually with n ≥ 8) are to be analyzed for
correlation.
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co-variants may contribute to the response, i.e. correlated occurrences
may be due to a common cause. For example, suppose one researcher,
studying the effects of increasing sugar levels on the sensory acceptance
of coffee using a consumer panel, obtains a correlation coefficient of
+0.72 with p = b0.05 but another researcher in another place, using
the same trial conditions repeats the test and obtains very different corre-
lation coefficients and probability value. The explanation is possibly relat-
ed to differences in consumer habits and experience but might also
reflect the variety and composition of the coffee beans, their roasting
and the preparation of coffee for the test. Hence, although correlation
studies can be extremely useful, they do not automatically imply a
cause and effect relationship between the variables. Another aspect of
correlation that often needs to be considered is the intra-class correlation
coefficient. This provides a measure of the correlation between two sets
of variables when the data are paired or can be organized into groups. It
is analogous to the use of a paired, rather than an independent, t-test.
The procedure, described in Bland and Altman (1996), estimates the pro-
portion of total variance that is due to the between-group component; it
has many applications but is particularly useful for examination of taste
panel results from examination of replicate samples of a product.

Although a correlation coefficient provides ameasure of the strength
of a relationship between two sets of data, it does not prove equivalence
between the results. Lack of equivalence is due to bias and can be deter-
mined using the Bland and Altman (1986, 1995) procedure. For exam-
ple, comparison of two analytical methods may give results that are
highly correlated but when bias is assessed, one method may give con-
sistently larger or smaller values for the same set of samples; thus the
two methods do not provide equivalent results.

2.5. Regression analysis

Regression analysis is used to examine the relationship between
sets of dependent and independent variables and includes many
techniques for modeling and analyzing two or more sets of data.
There are many forms of regression including linear, multi-linear,
probit and logistic approaches, the latter being particularly impor-
tant in studying biological responses to dose levels of inhibitory or
stimulatory treatments. In its simplest form, regression is used to as-
sess the relative effects of e.g. increasing treatment times (or tem-
peratures) on the heat resistance of microorganisms in order to
determine thermal effects (D-values) under defined process condi-
tions. It may be used also to establish calibration curves for chemical,
physical and biological assays for continuous data sets. Calibration
curves require at least five concentration levels including a blank
value with adequate (at least triplicate) replication of tests at each
concentration level.

Assumptions for regression require that:

– The samples are representative of the population for the inference
prediction;

– The concentrations of the independent variables are measured with
zero error, i.e. they are ‘absolute’ values; if this is not the case then
the more complex orthogonal linear regression must be used in
order to correct for errors in the predictor variable (cf. Carroll,
Ruppert, Stefanski, and Crainiceanu (2012)

– The error term of the estimates is a randomvariablewith zeromean;
– The predictors are linearly independent, i.e. each value cannot be

expressed as a linear combination of the other values;
– The variance of the errors is homoscedastic.

In order to perform a regression analysis it is essential to:

– Test data for the presence of outliers (at 95 or 99% of confidence)
using the Grubb's test for each concentration level;

– Ensure the homogeneity of variances in the concentration levels
of the calibration curve by using one the tests described above
(Section 2.1.2).
– Build the model (i.e. the graph) to display the analyte concentra-
tion versus the response (absorbance, area, etc.);

– Test the significance of the regression and its lack of fit through
the F-test and a one-factor ANOVA. Provided that the response
is directly and linearly correlated to the concentrations then the
regression coefficient should be significant. Evidence for lack of
fit (p b 0.05), may be due to a non-linear response, to excessive
variation in the replicates at one or more of the test values or
the use of an over-extended independent variable range. In this
case, removing the highest values and repeating the statistical
analysis should reduce the range of concentrations. Evidence for
lack of linearity may indicate that a nonlinear model (quadratic,
for example) might be more appropriate for the method, and
therefore, alternative models should be evaluated.

– Determine the following statistical parameters by means of the
regression analysis:
• The regression equation (y = ax + b), where y is the dependent
estimate at independent concentration level (x), a is the slope of
the line and b is the linear intercept when x = 0;

• The standard deviation of the estimated parameters and model;
• The statistical significance of the estimated parameters;
• The coefficient of determination (R2; regression coefficient) and
the adjusted R2.

The regression model is considered suitable to the experimental
data when:

1. The standard deviation of the parameter is at least 10% lower than
the corresponding parameter value;

2. The standard deviation of theproposedmathematicalmodel is small;
3. The parameters of amodel are statistically significant otherwise they

will not contribute to the model.

It is a myth to consider that if R2 N 90% the model is excellent
(Montgomery & Runger, 2011). This is only one criterion to evaluate
the goodness of fit of the model. If R2 is low (b70%), the mathematical
model is not good; on the other hand, if R2 is high (N90%), it means
that you should continue the analysis and check the other criteria. It is
noteworthy that in some applications, depending on the type of analy-
sis, e.g. evaluation of sensory data, the coefficient of determination
may be considered good if R2 N 60%;

4. The statistical significance, obtained from the F-test of an ANOVA
analysis of the proposed mathematical model is at least p b 0.05;

5. Analysis of the residuals (experimental value for a response var-
iable minus value predicted by the mathematical model) must
conform to ND and have a constant variance, as described
above. This is a necessary condition for the application of some
post-hoc tests such as t and F.

It is important to recognize that the regression and correlation coeffi-
cients describe different parameters. Regression describes the goodness
of fit of a model; correlation estimates the linear relationship of two
variables.

A common mistake is to use R2 to compare models. R2 is always
higher if we increase the order of a model (linear in comparison to qua-
dratic, for example). For example, a third order polynomial has a higher
R2 than a second order polynomial because there are more terms, but it
does not necessarily mean that the first is the better model. An analysis
of the degrees of freedom (number of experimental points minus num-
ber of parameters from the model) needs to be carried out. A model
with more terms requires estimation of more coefficients so fewer de-
grees of freedom remain. Thus, another criterion needs to be used: the
adjusted regression coefficient — Radj

2 . This coefficient adjusts for the
number of explanatory terms in a model relative to the number of
data points and its value is usually less than or equal to that of R2.
When comparing models, the one with the highest adjusted coefficient
is the best model.
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We have noted above that in addition to simple ‘Generalized Linear
Models’ of regression other, more complex, forms of regression are
available for use in specific circumstances. The reader is directed to
otherworks, such as Kleinbaum, Kupper, andAzhar (2007), for informa-
tion and guidance on such procedures.

2.6. Other statistical techniques

Wehave discussed above themost frequently used univariate and bi-
variate statistical techniques. However, other statistical andmathematical
procedures, especially chemometrics, and including Principal Component
Analysis, Cluster Analysis, Discriminate analysis, K-nearest neighbors and
other complex techniques (neural networks) can be considered to be ex-
tensions of these methods developed for specific purposes. Examples of
several approaches to analysis of complex data using such procedures in-
clude the analysis of sensory (Keenan, Brunton, Mitchell, Gormley, &
Butler, 2012), physicochemical (Gómez-Meire, Campos, Falqué, Díaz, &
Fdez-Riverola, 2014), microbiological (Zhou et al., 2013), metabolomics
(Oms-Oliu, Odriozola-Serrano, & Martín-Belloso, 2013) and chemical
data (Granato et al., in press; Zielinski et al., in press).

3. Final remarks

In this paper, we have sought to explain the use of some the more
common statistical tests in analysis of data generated in Food Science
and Technology by means of theoretical and practical examples. We
have tried, so far as is practical, to avoid the use of statistical jargon
and to provide reference to more advanced works where appropriate.
The reader is encouraged to ponder the advantages and disadvantages
of these tests in practical applications and to apply the most suitable
methods for analysis of their experimental data.
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