

Construção de Modelos de Otimização

e

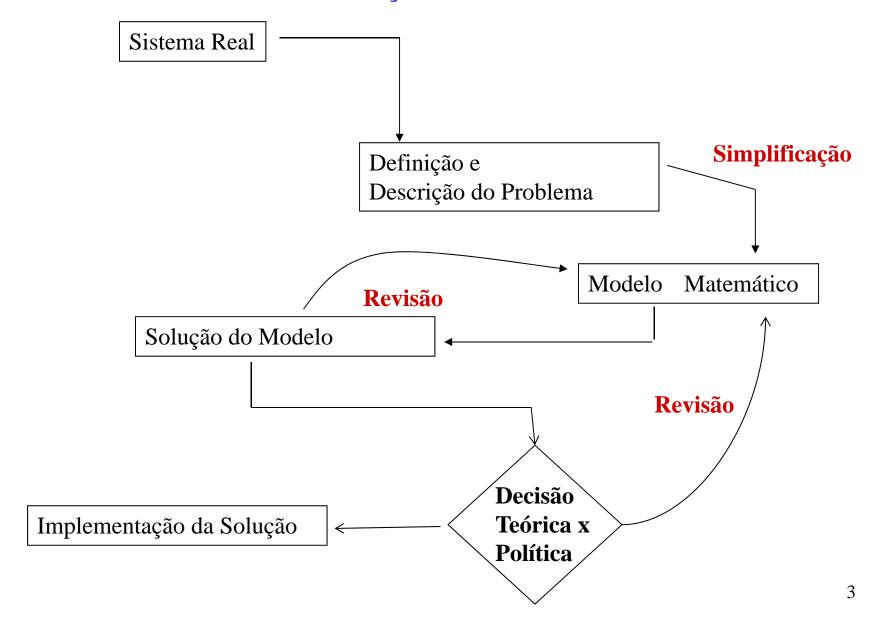
Ferramentas Computacionais

Socorro Rangel DMAp

Departamento de Matemática Aplicada

e-mail: socorro@ibilce.unesp.br

http://www.ibilce.unesp.br/#!/departamentos/matematica-aplicada/docentes


Motivação

Kantarovich (1939) (em Dantzig, 1963, pg 22)

"Existem duas maneiras de aumentar a eficiência de uma loja, empresa, ou indústria:

- 1. Uma delas requer a melhoria tecnológica, isto é, atualização dos equipamentos, mudança no processo tecnológico, descoberta de novos e melhores tipos de matéria prima.
- 2. A outra maneira, até hoje muito menos utilizada, envolve melhorias na organização do planejamento e da produção. Isto é, melhorias no processo de distribuição do trabalho entre as máquinas da empresa, distribuição de matéria prima, combustível, entre outros fatores."

Processo de Construção de um Modelo Matemático

Construção de um modelo

- Descreva com a maior riqueza de detalhes o problema a ser tratado
- Identifique a classe do modelo matemático mais apropriado
- Defina as variáveis, funções. Se necessário, simplifique o problema.

Construção de Modelos **Elementos de um modelo de otimização**

DECISÕES

Identificar as possíveis soluções

(Definir Variáveis de Decisão)

OBJETIVOS

Definir <u>critérios de avaliação</u> capazes de indicar que uma decisão é preferível a outras

(Definir Função Objetivo)

RESTRIÇÕES

Identificar quais as **restrições** que limitam as decisões a serem tomadas

(Definir Conjunto de Equações ou Inequações)

Construção de Modelos

Forma Geral de um Modelo de Otimização

min (ou max) (função objetivo) sujeito a

(restrições principais - equações ou inequações)

(tipo das variáveis de decisão)

Classes de Modelos de Otimização

- Não linear
- Linear Contínuo
- Linear Inteiro
- Misto

Modelo de Otimização Linear Contínuo

$$\min(ou \max)z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
 sujeito a
$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \sim b_1$$

$$a_{22}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \sim b_2$$

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \sim b_m$$

 $x_1, x_2, ... x_n \ge 0$
onde \sim pode ser \ge , \le , ou =

Forma Padrão:

$$\min \quad z = c^t x$$

s.a

$$Ax = b$$

$$x \in \mathfrak{R}^n_+$$

Exemplo - O Problema da Dieta

Problema: Paula deseja saber quanto gastar para fazer uma dieta alimentar que forneça diariamente toda a energia, proteína e cálcio que ela necessita. Seu médico recomendou que ela se alimente de forma a obter diariamente no mínimo 2000 kcal de energia, 65g de proteína e 800 mg de cálcio. O Valor nutritivo e o preço (por porção) de cada alimento que ela esta considerando comprar é dado na Tabela 1.

Tabela 1 – Valor nutritivo e custo dos alimentos					
alimento	tamanho da porção	0	Proteína (g)	cálcio (mg)	preço p/ porção (centavos)
arroz	100g	170	3	12	14
ovos	2un	160	13	54	13
leite	237ml	160	8	285	9
feijão	260g	337	22	86	19

Construindo um modelo para o Problema da Dieta

Neste problema temos:

elementos conhecidos: valor nutritivo dos alimentos, custo dos alimentos

elementos desconhecidos: quanto consumir de cada alimento

objetivo a ser alcançado: obter uma dieta de baixo custo

restrições: a dieta deve fornecer uma quantidade mínima de nutrientes.

Construindo um modelo para o Problema da Dieta <u>Índices</u>

A dieta deve ser feita a partir de 4 itens:

arroz, ovos, leite, feijão.

Faça j = 1,2,3,4 representar respectivamente cada um dos itens

VARIÁVEIS DE DECISÃO

Defina então:

x_j = número de porções adquirida do alimento j para ser usada na dieta

Tipo das variáveis

$$x_i \ge 0, x_i \in \Re$$
 Divisibilidade

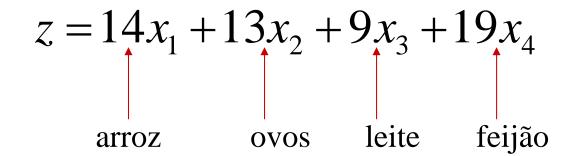
Construindo um modelo para o Problema da Dieta Objetivo

Obter a dieta de menor custo possível.

Proporcionalidade:

```
1 porção de arroz ==> 14 centavos,
2 porções de arroz ==> 28 centavos,
x<sub>1</sub> porções de arroz ==> 14* x<sub>1</sub> centavos.
```

gasto associado a compra de ovos: 13 * x₂


Aditividade

gasto total com arroz e ovos é dado pôr:

$$14 x_1 + 13 x_2$$

Construindo um modelo para o Problema da Dieta

Custo total da dieta é então:

Custo do:

Objetivo

Obter a dieta de menor custo possível.

$$\min z = 14x_1 + 13x_2 + 9x_3 + 19x_4$$

Construindo um modelo para o Problema da Dieta

Restrições

Obter quantidade mínima de nutrientes:

energia:

```
1 porção de arroz ==> 170 kcal, x1 porções de arroz ==> 170 x1

1 porção de ovos ==> 160 kcal, x2 porções de ovos ==> 160 x2

1 porção de leite ==> 160 kcal, x3 porções de leite ==> 160 x3

1 porção de feijão ==>337 kcal, x4 porções de feijão ==> 337 x4
```

quantidade total de energia >= quantidade mínima necessária

Proporcionalidade e aditividade

Temos então:

170
$$x_1 + 160 x_2 + 160 x_3 + 337 x_4 \ge 2000$$

Modelo de Otimização Linear Contínuo Para o Problema da Dieta

min
$$z = 14x_1 + 13x_2 + 9x_3 + 19x_4$$
 (função-objetivo) sujeito a: (restrições)
170 $x_1 + 160x_2 + 160x_3 + 337x_4 \ge 2000$ (energia)
3 $x_1 + 13x_2 + 8x_3 + 22x_4 \ge 65$ (proteína)
12 $x_1 + 54x_2 + 285x_3 + 86x_4 \ge 800$ (cálcio)
 $x_j \ge 0$, $j = 1, 2, 3, 4$ (tipo das variáveis)

Solução Para o Problema da Dieta

Função Objetivo: 112.500000000

VARIAVEL VALOR

X1 0.00 (arroz)

X2 0.00 (ovos)

X3 12.50 (leite)

X4 0.00 (feijão)

Isto é consumir 12.5* 237ml = 2,9625 l de leite e gastar com a dieta 112,5 u.m.

Esta solução é aceitável?

Novo Modelo Para o Problema da Dieta

Se limitarmos a quantidade de leite na dieta: No **máximo 2 porções**

min
$$z = 14x_1 + 13x_2 + 9x_3 + 19x_4$$

sujeito a:

170
$$x_1 + 160 x_2 + 160 x_3 + 337 x_4 \ge 2000$$

3 $x_1 + 13 x_2 + 8 x_3 + 22 x_4 \ge 65$
12 $x_1 + 54 x_2 + 285 x_3 + 86 x_4 \ge 800$
 $x_j \ge 0, j = 1, 2, 3, 4 x_3 \le 2$

Nova Solução Para o Problema da Dieta

```
Função Objetivo: 112,72
VARIAVEL VALOR
X1 0,00 (arroz)
X2 0.00 (ovos)
X3 2.00 (leite)
X4 2.03 (feijão)
```

Isto é consumir:

2*237ml = 474 ml de leite4,99*260g = 1297,4 g de feijão

e gastar com a dieta 112,72 u.m.

Ferramentas Computacionais

Sistemas de Resolução

- Comerciais
 - CPLEX, XPRESS-MP,
 - Problema de otimização: contínua, inteira, quadrática
 - Arquivos no formato: MPS, próprio (algébrico)
 - Possuem linguagem de modelagem
 - GUROBI
- Não-Comerciais
 - CLP (COIN-OR Linear Program Solver)
 - LPSOLVE

Sistemas Algébricos de Modelagem: Objetivos

- Interface com sistemas de resolução
- Separar o Modelo dos dados
- Facilitar a construção de um modelo
- Documentar
- Facilitar a Manutenção do modelo

Sistemas Algébricos de Modelagem: Estrutura Geral

Conjuntos e índices

- locais: {Rio, SP, Goiânia}, códigos: {A11, B45}, mês: {jan, fev, ...}

dados, parâmetros, tabelas

- Separa o modelo de um exemplar do mesmo
- fornecidos em arquivos de dados; retirados de planilhas de cálculo ou banco de dados

variáveis de decisão

agrupar por tipos, definir para subconjuntos de índices

• função objetivo

linear ou não linear

Restrições

agrupar por tipos e expandir, definir para subconjuntos de índices

Linguagens de Modelagem

MPL

- Modelagem:
 - otimização contínua, inteira, não linear
- Formato de arquivos (MPS, CPLEX,...)
- Conexão com EXCEL, Banco de dados
- Gráfico da Estrutura da matriz de restrições
- Conexão com sistemas de resolução (CPLEX, FORTMP,...)

XPRESS-MOSEL

- Linguagem Procedural
- Integração com Linguagens de Programação (C, Java, Visual Basic)

AMPL

- Linguagem Procedural
- Modelagem
 - otimização contínua, inteira, quadrática
- Interface gráfica com poucos recursos
- Permite a criação de subrotinas

Linguagens de Modelagem: Principais Comandos

MPL

TITLE

INDEX

DATA

VARIABLES

MODEL

MIN (ou MAX)

SUBJECT TO

END

XPRESS-MOSEL

MODEL nome do model

Instruções para compilação

Definição de parâmetros

Definição do modelo

Definição de algoritmos

END-MODEL

AMPL

SET

define um índice;

PARAM

define uma estrutura (vetor ou matriz) que irá armazenar os elementos conhecidos do exemplar, fornecidos no arquivo nomemodelo.dat;

VAR

define variáveis de decisão;

MINIMIZE (ou MAXIMIZA)

define a função-objetivo e o critério de otimização

SUBJECT TO

define um conjunto de restrições

MPL: O Problema da Dieta Índices

```
Dieta.mpl }
  Problema da Dieta (Chvátal, 1986)
 Determinar uma combinação de alimentos que forneça uma quantidade mínima de
   nutrientes }
TITLE
  Dieta
INDEX
   ! Considerar na dieta os alimentos abaixo, Tamanho da porção: 100g, 2un,
        237ml,260g respectivamente;
              = (arroz, ovos, leite, feijao);
   alimento
   !Nutrientes necessários na dieta
   nutriente = (energia,proteina,calcio);
```

MPL: O Problema da Dieta Dados

DATA

- ! Custo de cada alimento a ser considerado na dieta, por porção preco[alimento] = (14 13 9 19);
- ! Quantidade mínima total de cada nutriente na dieta; nivel[nutriente] = (2000, 65, 800);
- ! Quantidade de nutrientes presente em cada tipo de alimento considerado na dieta, por porção;

MPL: O Problema da Dieta Modelo

VARIABLES

comprar[alimento];

MODEL

MIN Custo_total = **SUM**(alimento: preco*comprar);

SUBJECT TO

N_[nutriente]: SUM(alimento: quant*comprar) > nivel[nutriente];

END

MPL: O Problema da Dieta Modelo gerado no Formato LP

```
dieta.lp
  Generated with the MPL Modeling System
   Constraints: 3
                               Variables: 4
                                                            Nonzeros:
                                                                                12
  Density:
               100 %
MINIMIZE
 Custo_to: 14 cp_arr + 13 cp_ov + 9 cp_lei + 19 cp_fj
SUBJECT TO
 N_ene: 170 \text{ cp\_arr} + 160 \text{ cp\_ov} + 160 \text{ cp\_lei} + 337 \text{ cp\_fj} >= 2000
 N_prot: 3 \text{ cp}_arr + 13 \text{ cp}_ov + 8 \text{ cp}_lei + 22 \text{ cp}_fi >= 65
N_Cal: 12 \text{ cp\_arr} + 54 \text{ cp\_ov} + 285 \text{ cp\_lei} + 86 \text{ cp\_fj} >= 800
END
```

Os sistemas de resolução supõem que $x \ge 0$

MPL: O Problema da Dieta Manutenção do Modelo

Mudança no problema e nos dados: O que muda no modelo?

- Se os preços dos alimentos mudarem?
 - Mudar a seção DATA
 - ! Custo de cada alimento a ser considerado na dieta preco[alimento] = (11 10 5 15);
- Se quisermos restringir a quantidade de cada tipo de alimento usada na dieta?
 - Mudar seção DATA e o conjunto de restrições
- Se quisermos incluir mais alimentos na dieta?
 - Mudar as seções INDEX e DATA

MPL: O Problema da Dieta Restrição quanto à quantidade de Alimentos

DATA

```
!limite máximo de leite na dieta;
lim =2;
```

BOUNDS

```
{ limite máximo de leite na dieta, neste caso apenas o consumo de leite esta limitado} comprar[alimento=leite]<=lim;
```

MPL: O Problema da Dieta Novo Modelo

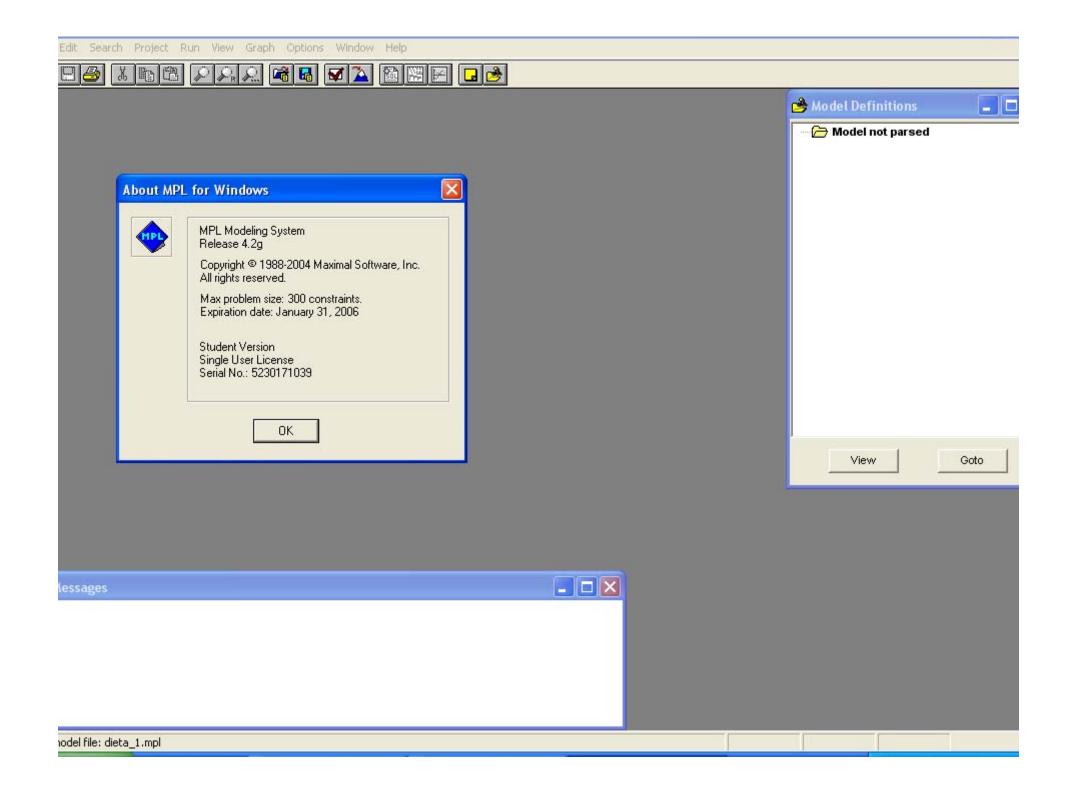
```
dieta.lp
  Generated with the MPL Modeling System
                     3
                                Variables: 4
                                                            Nonzeros:
  Constraints:
                                                                                12
  Density:
                   100 %
MINIMIZE
 Custo_to: 14 cp_arr + 13 cp_ov + 9 cp_lei + 19 cp_fj
SUBJECT TO
 N_ene: 170 \text{ cp\_arr} + 160 \text{ cp\_ov} + 160 \text{ cp\_lei} + 337 \text{ cp\_fj} >= 2000
 N_prot: 3 \text{ cp_arr} + 13 \text{ cp_ov} + 8 \text{ cp_lei} + 22 \text{ cp_fj} >= 65
 N_Cal: 12 \text{ cp\_arr} + 54 \text{ cp\_ov} + 285 \text{ cp\_lei} + 86 \text{ cp\_fj} >= 800
BOUNDS
  cp_lei <= 2
END
```

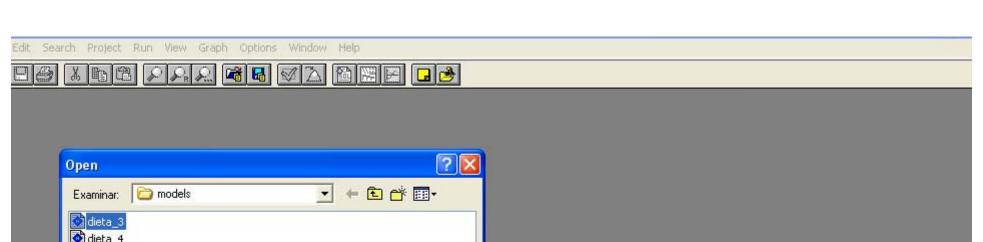
Manutenção do Modelo: Inclusão de Alimentos

INDEX

! Considerar na dieta os alimentos abaixo, Tamanho da porção: 100g, 2un, 237ml,260g, 50g, respectivamente;

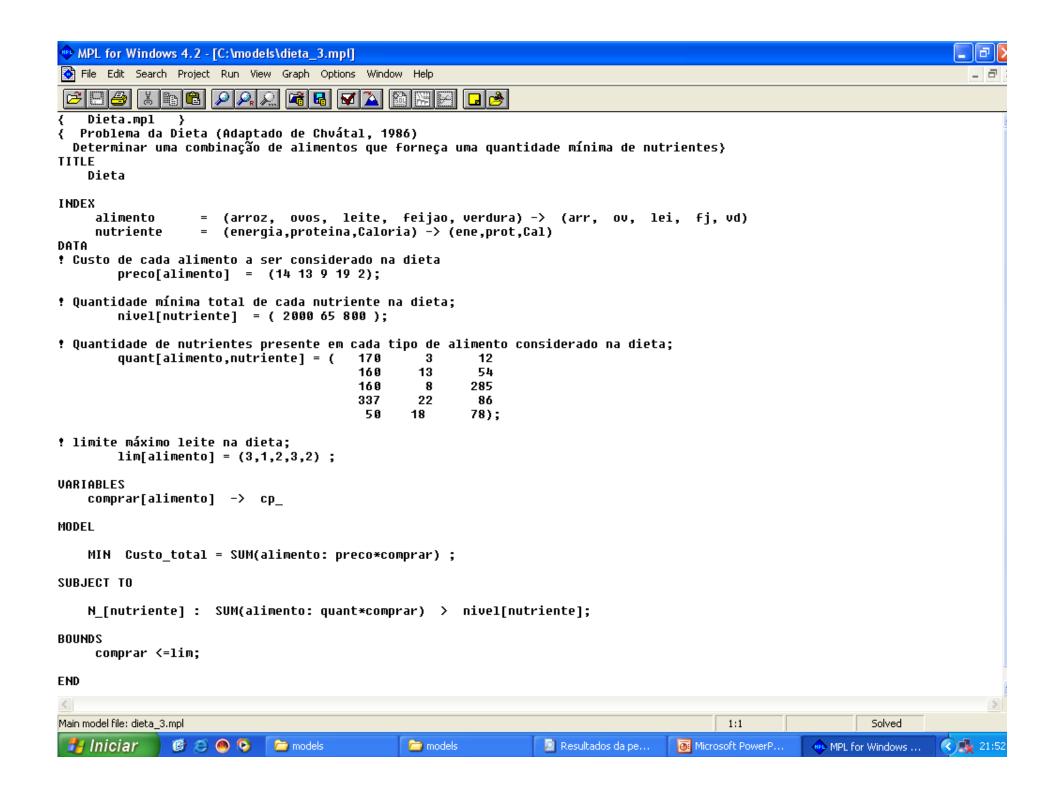
```
alimento = (arroz, ovos, leite, feijao, verdura);
```

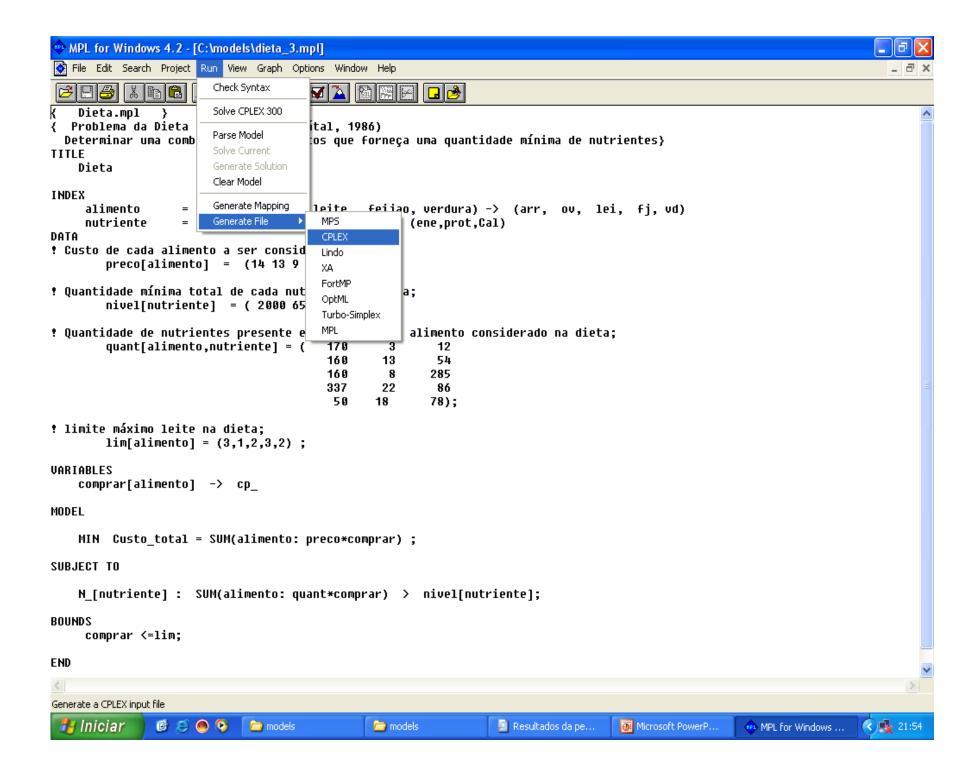

DATA

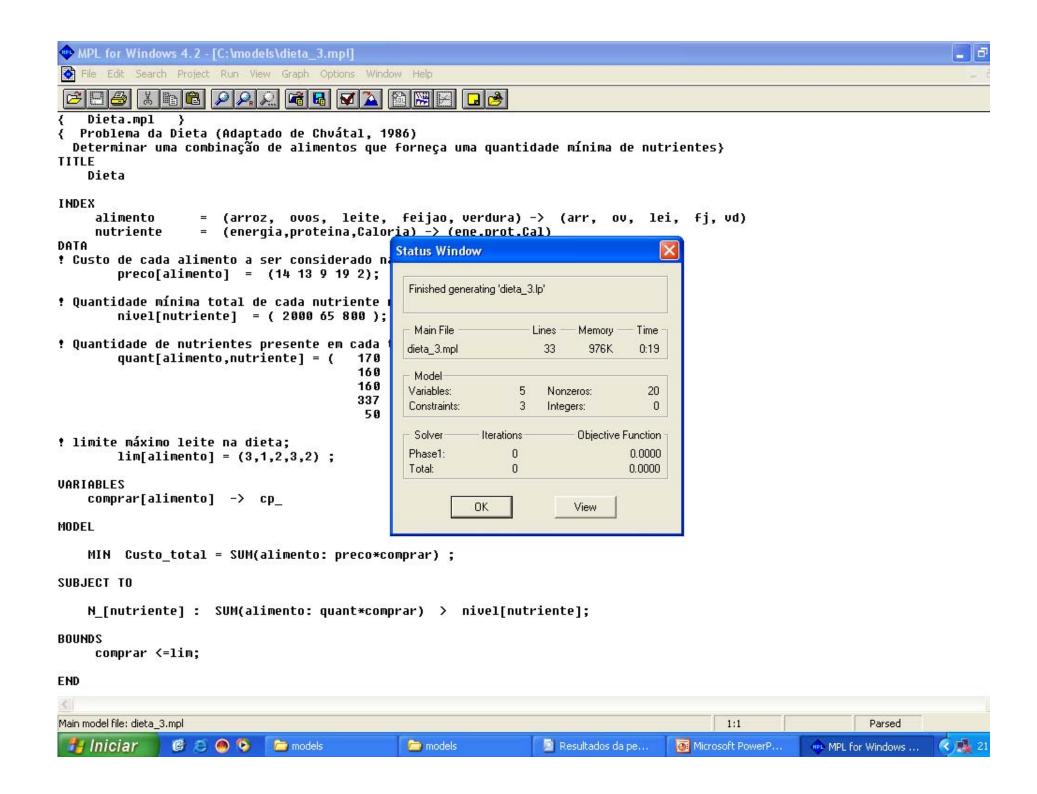

! custo de cada alimento a ser considerado na dieta, por porção;

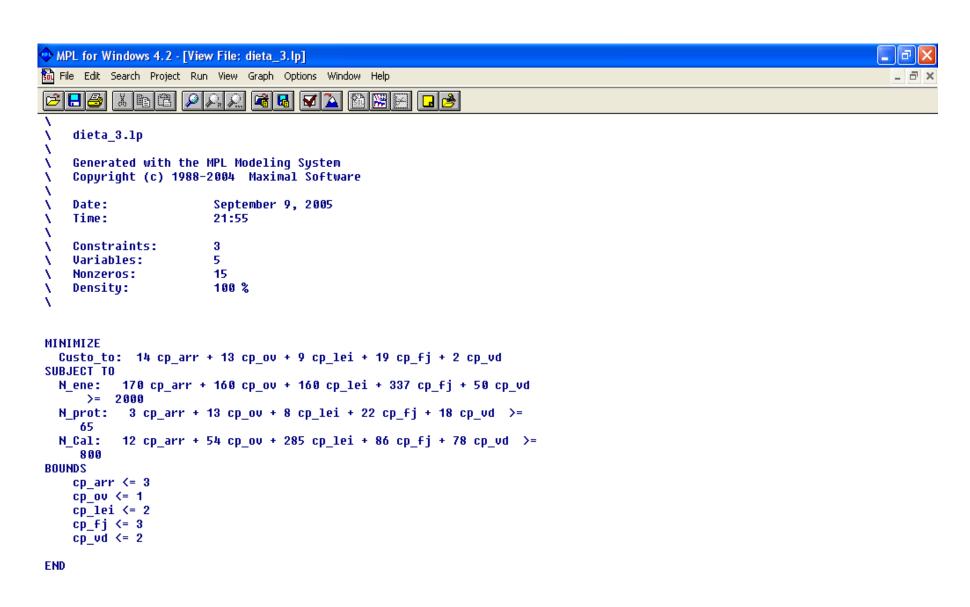
```
preco[alimento] = (14 \ 13 \ 9 \ 19 \ 2)
```

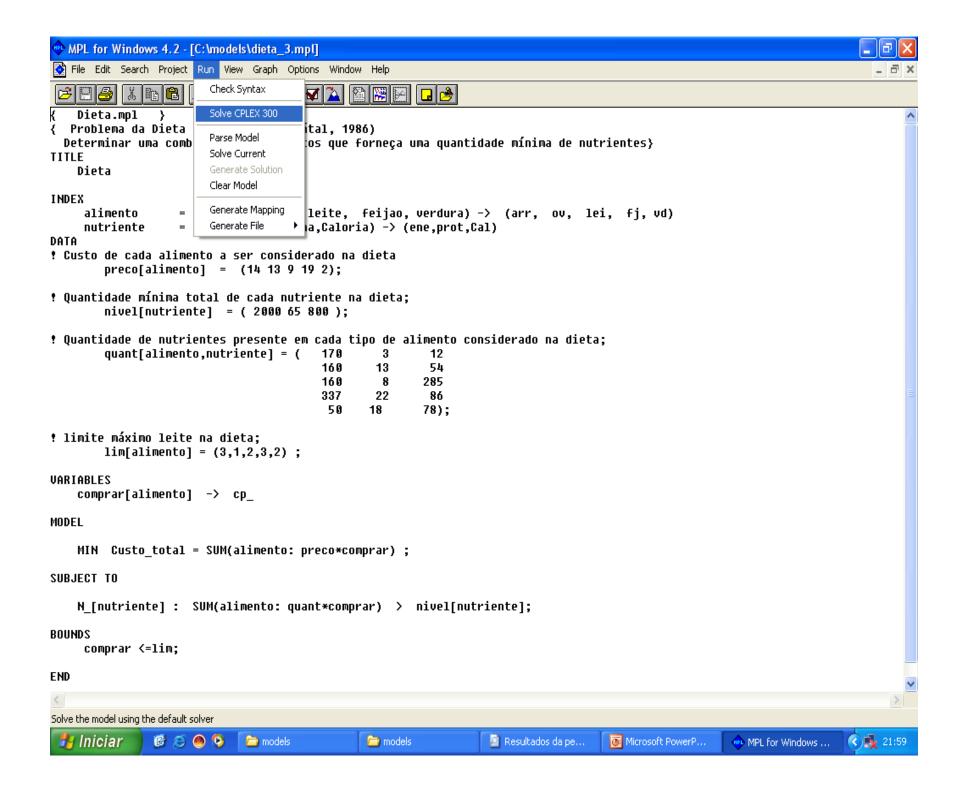
! Quantidade de nutrientes presente em cada tipo de alimento considerado na dieta, por porção;

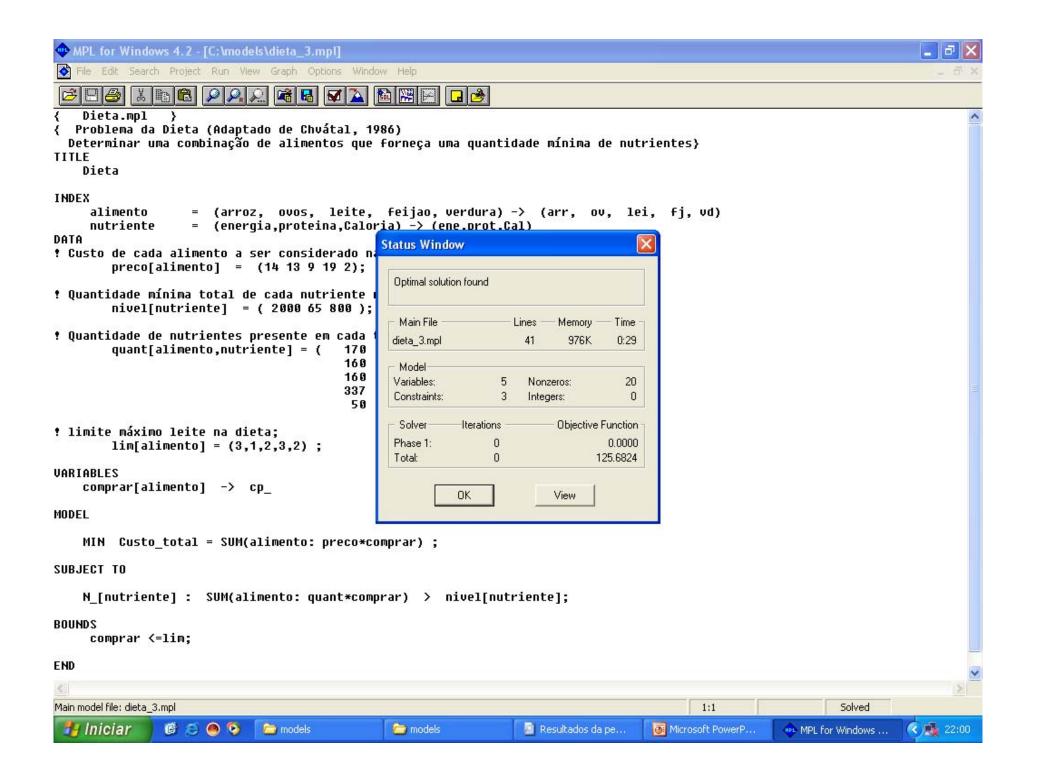

```
quant[alimento,nutriente] = (
                                        3
                                                12
                               170
                                       13
                                                54
                               160
                               160
                                                285
                               337
                                       22
                                                86
                                                         );
                                       1.8
                               21
                                                 78
```

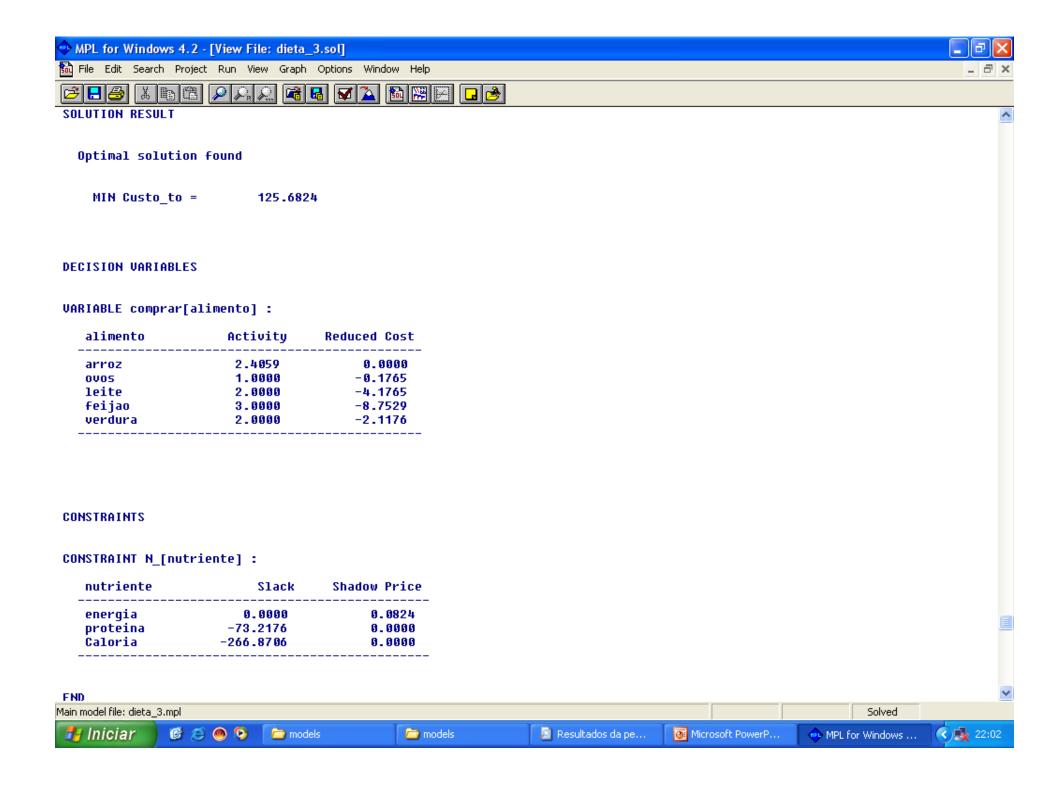





Solved


nodel file: dieta_3.mpl





XPRESS-MOSEL: Problema da Dieta

! Arquivo: dieta.mos MODEL "dieta1" USES "mmxprs" !use o sistema mmxprs para resolver o exemplar **DECLARATIONS** !definição dos **índices** alimento = {"arroz", "ovos", "leite", "feijao"}; nutriente = {"energia", "proteina", "Caloria"}; !definição das estruturas para receber dados ! Custo de cada alimento a ser considerado na dieta preco: array(alimento) of real; ! Quantidade mínima total de cada nutriente na dieta; nivel: array (nutriente) of real; ! Nutrientes presente em cada tipo de alimento considerado na dieta; quant: array (alimento, nutriente) of real; ! definição das variáveis de decisão- Número de porções de cada alimento que ira compor a dieta comprar: array(alimento) of mpvar; **END-DECLARATIONS**

XPRESS-MOSEL: Problema da Dieta

! Arquivo: dieta.mos (continuação)

```
! dados do exemplar
```

! Custo de cada alimento a ser considerado na dieta

```
preco := [14, 13, 9, 19];
```

! Quantidade mínima total de cada nutriente na dieta;

```
nivel := [2000, 65, 800];
```

! Quantidade de nutrientes presente em cada tipo de alimento considerado na dieta;

```
quant := [170, 3, 12,
160, 13, 54,
160, 8, 285,
337, 22, 86];
```

XPRESS-MOSEL: Problema da Dieta

! Arquivo: dieta.mos (continuação)

```
!definição da função objetivo
Custo_total := SUM(j in alimento) preco(j)*comprar(j);
!definição das restrições
FORALL (i in nutriente)
 SUM(j in alimento) quant(j,i)*comprar(j) >= nivel(i);
! Define Critério de otimização e Resolve o exemplar
minimize(Custo_total)
! Relatório da solução
writeln("Custo_total: ", getobjval)
writeln("Numero de porções a ser incluída na dieta: ")
forall(j in alimento) writeln(j, ": ", getsol(comprar(j)))
```

END-MODEL

AMPL: O Problema da Dieta

```
# Arquivo: dieta.mod
# Definição dos índices
set alimento:
set nutriente;
# Estruturas para receber dados do exemplar
param preco {alimento};
param nivel {nutriente};
param quant {nutriente, alimento};
#variável de decisão:quanto comprar de cada alimento
var comprar { j in alimento } >=0;
#defini função-objetivo e critério de otimização
minimize custo total: sum {i in alimento} preco[i] *comprar[i];
#Níveis mínimos de nutrientes devem ser satisfeitos
subject to N_ {i in nutriente}:
 sum {i in alimento} quant[i,i] * comprar[i] >= nivel[i];
```

```
#Arquivo dieta.dat
set alimento := arroz ovos leite
feijao;
set nutriente := energia proteina
caloria;
param preco :=
         14
arroz
         13
OVOS
leite
         9
feijao
         19;
param nivel :=
energia 2000
proteina 65
caloria 800;
param quant:
          arroz ovos leite feijao :=
                        130 100
energia
              170
proteina
                   6 6.1 6
                        232 28;
              12
                  25
caloria
```

Endereços na WWW

• Comerciais (versão de estudante ou Licença Acadêmica gratuita)

MPL: http://www.maximal-usa.com/

XPRESS: http://www.dashoptimization.com/

AMPL: http://www.ampl.com//

GUROBI: http://www.gurobi.com/products/gurobi-optimizer/try-for-yourself

Não Comerciais

CLP (COIN-OR Linear Program Solver) http://www.coin-or.org/Clp/

LPSOLVE - http://lpsolve.sourceforge.net/5.5/

ZIMPL - http://www.zib.de/koch/zimpl/

Para Saber Mais

- 1. Rangel, S. *Introdução à construção de modelos de otimização linear e inteira*. 2. ed. São Carlos-SP: Sociedade Brasileira de Matemática Aplicada e Computacional-SBMAC, 2012. v. único. 82 p. (disponível em http://www.sbmac.org.br/arquivos/notas/livro_18. pdf)
- 2. Wiliams, H.P., *Model Building in Mathematical Programming*, Ed. John Wiley & Sons, 1990.
- 3. Wolsey, L., *Integer Programming*, Ed. John Wiley & Sons, 1998.
- 4. Arenales, M., Armentano, V., Morabito, R. E Yanasse, H.-Pesquisa Operacional, Elsevier, 2007.